

Qonnex bvba

1 DCE.230 Modbus manual v1.7

1. 2-WIRE DCE.230 Smart Meter Modbus Protocol Implementation V1.7

1.1 Modbus Protocol Overview

This section provides basic information for interfacing the 2-WIRE Smart meter to a Modbus Protocol

network. If background information or more details of the 2-WIRE implementation is required, please refer

to section 2 and 3 of this document.

2-WIRE offers the option of an RS485 communication facility for direct connection to SCADA or other

communications systems using the Modbus Protocol RTU salve protocol. The Modbus Protocol

establishes the format for the master’s query by placing into it the device address, a function code defining

the requested action, any data to be sent, and an error checking field. The slave’s response message is

also constructed using Modbus Protocol. It contains fields confirming the action taken, any data to be

returned, and an error-checking field. If an error occurs in receipt of the message, DCE.230 Modbus will

make no response. If the DCE.230 Modbus is unable to perform the requested action, it will construct an

error message and send it as the response.

The electrical interface is RS485, via 2 screw terminals. Connection should be made using twisted pair

screened cable (Typically 22 gauge Belden 8761 or equivalent). All "A" and "B" connections are daisy

chained together. Line topology may or may not require terminating loads depending on the type and length

of cable used. Loop (ring) topology does not require any termination load. The impedance of the termination

load should match the impedance of the cable and be at both ends of the line. The cable should be

terminated at each end with a 120 ohm (0.25 Watt min.) resistor. A total maximum length of 1200 meters

is allowed for the RS485 network. A maximum of 32 electrical nodes can be connected, including the

controller. The address of each 2-WIRE meter can be set to any value between 1 and 247. Broadcast

mode (address 0) is supported.

The format for each byte in RTU mode is:

Coding System: 8-bit per byte

Data Format: 4 bytes (2 registers) per parameter.

Floating point format (to IEEE 754)

Most significant register first (Default). The default may be changed if required -See

Holding Register "Register Order" parameter.

Error Check Field: 2 byte Cyclical Redundancy Check (CRC)

Framing: 1 start bit

8 data bits, least significant bit sent first

1 bit for even/odd parity (or no parity)

1 stop bit if parity is used; 1 or 2 bits if no parity

Data Coding

Qonnex bvba

2 DCE.230 Modbus manual v1.7

All data values in the DCE.230 Modbus smart meter are transferred as 32 bit IEEE754 floating point

numbers, (input and output) therefore each DCE.230 Modbus meter value is transferred using two Modbus

Protocol registers. All register read requests and data write requests must specify an even number of

registers. Attempts to read/write an odd number of registers prompt the DCE.230 Modbus smart meter to

return a Modbus Protocol exception message. However, for compatibility with some SCADA systems,

DCE.230 Modbus Smart meter will response to any single input or holding register read with an instrument

type specific value.

The DCE.230 Modbus can transfer a maximum of 40 values in a single transaction; therefore the maximum

number of registers requestable is 80. Exceeding this limit prompts the EMM220 Modbus to generate an

exception response.

Data transmission speed is selectable between 1200，2400, 4800, 9600

1.2 Input register

Input registers are used to indicate the present values of the measured and calculated electrical quantities.

Each parameter is held in two consecutive16 bit register. The following table details the 3X register

address, and the values of the address bytes within the message. A (*) in the column indicates that the

parameter is valid for the particular wiring system. Any parameter with a cross(X) will return the value zero.

Each parameter is held in the 3X registers. Modbus Protocol function code 04 is used to access all

parameters.

For example, to request: Amps 1 Start address=0006

 No. of registers =0002

 Amps 2 Start address=0008

 No. of registers=0002

Each request for data must be restricted to 40 parameters or less. Exceeding the 40 parameter limit will cause

a Modbus Protocol exception code to be returned.

Address

(Register

)

DCM230 Input Register

Parameter

Modbus

Protocol Start

Address Hex

Description
Length

(bytes)

Data

Format
Units

Hi

Byte

Lo

Byte

Qonnex bvba

3 DCE.230 Modbus manual v1.7

30001 Line to neutral volts. 4 Float V 00 00

30007 Current. 4 Float A 00 06

30013 Active power. 4 Float W 00 0C

30073 Import active energy 4 Float kWh 00 48

30075 Export active energy 4 Float kWh 00 4A

30085 Total system power demand 4 Float W 00 54

30087 Maximum total system power demand 4 Float W 00 56

30343 Total active energy 4 Float kWh 01 56

30385 Resettable partial kWh 4 Float kWh 01 80

316385 Line to neutral volts. 4 Float V 40 00

316387 Current. 4 Float A 40 02

316389 Active power. 4 Float W 40 04

316391 Import active energy 4 Float W 40 06

316393 Emport active energy 4 Float W 40 08

316395 Total system power demand 4 Float kWh 40 0A

316397 Maximum total system power demand 4 Float kWh 40 0C

316399 Total active energy 4 Float kWh 40 0E

316401 Current resettable total active energy 4 Float kWh 40 10

316403 Current overload alarm

00 00 means no alarm

00 01 means Current overload alarm

2 Hex None 40 12

Note:

(1): The method of power demand calculation is: Import- Export. When the import and export powers appear in the

demand period,

the import power subtract the export power during data processing.

(2) The red marked are commonly used registers which allow users to read continuously at one time.

1.3 Modbus Protocol Holding Registers and Digital meter set up

Holding registers are used to store and display instrument configuration settings. All holding registers not listed

in the table below should be considered as reserved for manufacturer use and no attempt should be made to

modify their values.

The holding register parameters may be viewed or changed using the Modbus Protocol. Each parameter is held

in two consecutive 4X registers. Modbus Protocol Function Code 03 is used to read the parameter and Function

Code 10 is used to write. Write to only one parameter per message.

Address

Register

Parameter

Modbus

Protocol

Start Address Hex

Valid range ModeHigh Byte Low Byte

40003 Demand Period 00 02
Write demand period: 0~60 minutes, default 60.

Setting the period to 0 will cause the demand to
r/w

Qonnex bvba

4 DCE.230 Modbus manual v1.7

show the current parameter value, and demand

max to show the maximum parameter value since

last demand reset.

Length : 4 byte

Data Format : Float

40005 Slide time 00 04

Default 1, min.

Range ：1 ~ (Demand Period -1).

Length : 4 byte

Data Format : Float

r/w

40013 Pulse Width 00 0C

Write pulse1 on period in

Milliseconds: 60, 100 or 200, default 100.

Length : 4 byte

Data Format: float

r/w

40019
Network Parity

and Stop
00 12

Write the network port parity/stop bits for

MODBUS Protocol, where:

0 = 1 stop bit and none parity, default.

1 = 1 stop bit and even parity.

2 = 1 stop bit and odd parity.

3 = 2 stop bit and none parity. Requires a restart to

become effective.

Length : 4 byte

Data Format : Float

r/w

40021 Modbus address 00 14

Write the Modbus address

Address: 1 to 247 for MODBUS Protocol, default 1.

Requires a restart to become effective.

Length : 4 byte

Data Format : Float

r/w

40023 Pulse constant 00 16

Options：

0 means 1000 imp/kWh

1 means 100 imp/kWh

2 means 10 imp/kWh

3 means 1 imp/kWh

4 means 10K imp/kWh

Length : 4 byte

Data Format: float

r/w

40025 Password 00 18

Write password for access to protected

registers.

Length : 4 byte

Data Format : Float

ro

40029 Baud Rate 00 1C

Options：

0 means 2400 bps

1 means 4800 bps

2 means 9600 bps

r/w

Qonnex bvba

5 DCE.230 Modbus manual v1.7

3 means 19200 bps

5 means 1200 bps

Default：2

Length : 4 byte

Data Format: float

40059
Auto-scroll

display time
00 3A

Range: 0~60s.

0 means no scroll

Default:0

Length : 4 byte

Data Format : Float

r/w

40061 Backlit time 00 3C

Options:0,5,10,20,30,60 minutes

0 means the backlit always on

Default：60

Length : 4byte

Data Format : Float

r/w

40087

Pulse output

type
00 56

Options：

1 means Import active energy

2 means total active energy

4 means Export active energy

Default：2

Length : 4 byte

Data Format: float

r/w

48193

Connection

method of shunt
20 00

Setting on shunt connection.

Option:

00 4E means Negative type (default)

00 50 means Positive type

Length: 2 byte

Data Format: Hex

r/w

461457 Reset F0 10

00 00：Reset Maximum Demand 00

03：Reset Partial Energy

Length : 2 byte

Data Format:Hex

wo

463777

Energy

Measurement

model

F9 20

Options：

00 01：Total=Import

00 02：Total=Import+Export

00 03：Total=Export

Length : 2 byte

Data Format: Hex

r/w

464513

Serial number FC 00

Serial number

Length: 4 byte

Data Format: unsigned int32

Note: Only read

ro

Qonnex bvba

6 DCE.230 Modbus manual v1.7

2. RS485 General Information

Some of the information in this section relates to other 2-WIRE Digital meter product families, and is included to

assist where a mixed network is implemented.RS485 or EIA (Electronic Industries Association) RS485 is a

balanced line, half-duplex transmission system allowing transmission distances of up to 1.2 km. The following

table summarizes the RS-485 Standard:

PARAMETER

Mode of Operation Differential

Number of Drivers and Receivers 32 Drivers, 32 Receivers

Maximum Cable Length 1200 m

Maximum Data Rate 10 M baud

Maximum Common Mode Voltage 12 V to –7 V

Minimum Driver Output Levels (Loaded) +/– 1.5 V

Minimum Driver Output Levels (Unloaded) +/– 6 V

Drive Load Minimum 60 ohms

Driver Output Short Circuit Current Limit 150 mA to Gnd,

250 mA to 12 V

250 mA to –7 V

Minimum Receiver Input Resistance 12 kohms

Receiver Sensitivity +/– 200 mV

Further information relating to RS485 may be obtained from either the EIA or the various RS485 device

manufacturers, for example Texas Instruments or Maxim Semiconductors. This list is not exhaustive.

2.1 Half Duplex

Half duplex is a system in which one or more transmitters (talkers) can communicate with one or more receivers

(listeners) with only one transmitter being active at any one time. For example, a “conversation” is started by

asking a question, the person who has asked the question will then listen until he gets an answer or until he

decides that the individual who was asked the question is not going to reply.

In a 485 network the “master” will start the “conversation” with a “query” addressed to a specific “slave”, the

“master” will then listen for the “slave’s” response. If the “slave” does not respond within a pre-defined period,

(set by control software in the “master”), the “master” will abandon the “conversation”.

2.2 Connecting the Instruments

If connecting an RS485 network to a PC use caution if contemplating the use of an RS232 to 485 converter

together with a USB to RS485 adapter. Consider either an RS232 to RS485 converter, connected directly to a

Qonnex bvba

7 DCE.230 Modbus manual v1.7

suitable RS232 jack on the PC, or use a USB to RS485 converter or, for desktop PCs a suitable plug in RS485

card. (Many 232:485 converters draw power from the RS232 socket. If using a USB to RS232 adapter, the

adapter may not have enough power available to run the 232:485 converter.)

Screened twisted pair cable should be used. For longer cable runs or noisier environments, use of a cable

specifically designed for RS485 may be necessary to achieve optimum performance. All “A” terminals should

be connected together using one conductor of the twisted pair cable, all “B” terminals should be connected

together using the other conductor in the pair. The cable screen should be connected to the “Gnd” terminals.

A Belden 9841 (Single pair) or 9842 (Two pair) or similar cable with a characteristic impedance of 120 ohms is

recommended. The cable should be terminated at each end with a 120 ohm, quarter watt (or greater) resistor.

Note: Diagram shows wiring topology only. Always follow terminal identification on 2-WIRE Digital meter product

label.

There must be no more than two wires connected to each terminal, this ensures that a “Daisy Chain or “straight

line” configuration is used. A “Star” or a network with “Stubs (Tees)” is not recommended as reflections within

the cable may result in data corruption.

2.3 A and B terminals

The A and B connections to the 2-WIRE Digital meter products can be identified by the signals present on them

whilst there is activity on the RS485 bus:

Qonnex bvba

8 DCE.230 Modbus manual v1.7

2.4 Troubleshooting

·Start with a simple network, one master and one slave. With 2-WIRE Digital meter products this is easily

achieved as the network can be left intact whilst individual instruments are disconnected by removing the RS485

connection from the rear of the instrument.

·Check that the network is connected together correctly. That is all of the “A’s” are connected together, and all

of the “B’s” are connected together, and also that all of the “Gnd’s” are connected together.

·Confirm that the data “transmitted” onto the RS485 is not echoed back to the PC on the RS232 lines.(This

facility is sometimes a link option within the converter). Many PC based packages seem to not perform well

when they receive an echo of the message they are transmitting. SpecView and PCView (PC software) with

a RS232 to RS485 converter are believed to include this feature.

·Confirm that the Address of the instrument is the same as the “master” is expecting. ·If the “network”

operates with one instrument but not more than one check that each instrument has a unique address.

· Each request for data must be restricted to 40 parameters or less. Violating this requirement will impact the

performance of the instrument and may result in a response time in excess of the specification.

·Check that the MODBUS Protocol mode (RTU or ASCII) and serial parameters (baud rate, number of data bits,

number of stop bits and parity) are the same for all devices on the network.

·Check that the “master” is requesting floating-point variables (pairs of registers placed on floating point

boundaries) and is not “splitting” floating point variables.

·Check that the floating-point byte order expected by the “master” is the same as that used by 2-WIRE Digital

meter products.

·If possible obtain a second RS232 to RS485 converter and connect it between the RS485 bus and an additional

PC equipped with a software package, which can display the data on the bus. Check for the existence of valid

requests.

3. MODBUS Protocol General Information

Communication on a MODBUS Protocol Network is initiated (started) by a “Master” sending a query to a “Slave”.

The “Slave“, which is constantly monitoring the network for queries addressed to it, will respond by performing

the requested action and sending a response back to the ”Master”. Only the “Master” can initiate a query.

In the MODBUS Protocol the master can address individual slaves, or, using a special “Broadcast” address, can

initiate a broadcast message to all slaves. The 2-WIRE Digital meter do not support the broadcast address.

Qonnex bvba

9 DCE.230 Modbus manual v1.7

3.1 MODBUS Protocol Message Format

The MODBUS Protocol defines the format for the master’s query and the slave’s response. The query contains

the device (or broadcast) address, a function code defining the requested action, any data to be sent, and an

error-checking field.

The response contains fields confirming the action taken, any data to be returned, and an error-checking field.

If an error occurred in receipt of the message then the message is ignored, if the slave is unable to perform the

requested action, then it will construct an error message and send it as its response. The MODBUS Protocol

functions used by the 2-WIRE Digital meters copy 16 bit register values between master and slaves. However,

the data used by the 2-WIRE Digital meter is in 32 bit IEEE 754 floating point format. Thus each instrument

parameter is conceptually held in two adjacent MODBUS Protocol registers. Query

The following example illustrates a request for a single floating point parameter i.e. two 16-bit Modbus Protocol

Registers.

First Byte Last Byte

 Slave

Address

Function

Code

Start

Address

(Hi)

Start

Address

(Lo)

Number

of

Points

(Hi)

Number

of

Points

(Lo)

Number

of

Points

(Lo)

Error

Check

(Lo)

Error

Check

(Hi)

Slave Address: 8-bit value representing the slave being addressed (1 to 247), 0 is reserved for the broadcast

address. The 2-WIRE Digital meters do not support the broadcast address. Function Code: 8-bit value telling

the addressed slave what action is to be performed. (3, 4, 8 or 16 are valid for 2-WIRE Digital meter)

Start Address (Hi): The top (most significant) eight bits of a 16-bit number specifying the start address of the

data being requested.

Start Address (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the start address of the

data being requested. As registers are used in pairs and start at zero, then this must be an even number.

Number of Points (Hi): The top (most significant) eight bits of a 16-bit number specifying the number of registers

being requested.

Number of Points (Lo): The bottom (least significant) eight bits of a 16-bit number specifying the number of

registers being requested. As registers are used in pairs, then this must be an even number.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

Response

The example illustrates the normal response to a request for a single floating point parameter i.e. two 16-bit

Modbus Protocol Registers.

1 First Byte Last Byte

Slave

Address

Function

Code

Byte

Count

First

Register

(Hi)

First

Register

(Lo)

Second

Register

(Hi)

Second

Register

(Lo)

Error

Check

(Lo)

Error

Check

(Hi)

Qonnex bvba

10 DCE.230 Modbus manual v1.7

Slave Address: 8-bit value representing the address of slave that is responding.

Function Code: 8-bit value which, when a copy of the function code in the query, indicates that the slave

recognised the query and has responded. (See also Exception Response). Byte Count: 8-bit value indicating

the number of data bytes contained within this response First Register (Hi)*: The top (most significant) eight bits

of a 16-bit number representing the first register requested in the query.

First Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the first register

requested in the query.

Second Register (Hi)*: The top (most significant) eight bits of a 16-bit number representing the second register

requested in the query.

Second Register (Lo)*: The bottom (least significant) eight bits of a 16-bit number representing the second

register requested in the query.

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

*These four bytes together give the value of the floating point parameter requested.

Exception Response

If an error is detected in the content of the query (excluding parity errors and Error Check mismatch), then an

error response (called an exception response), will be sent to the master. The exception response is identified

by the function code being a copy of the query function code but with the most-significant bit set. The data

contained in an exception response is a single byte error code.

2 First Byte Last Byte

Slave Address Function Code Error
Code

Error
Check
(Lo)

Error
Check (Hi)

Slave Address: 8-bit value representing the address of slave that is responding. Function Code: 8 bit value

which is the function code in the query OR'ed with 80 hex, indicating that the slave either does not recognise

the query or could not carry out the action requested.

Error Code: 8-bit value indicating the nature of the exception detected. (See “Table Of Exception Codes“ later).

Error Check (Lo): The bottom (least significant) eight bits of a 16-bit number representing the error check value.

Error Check (Hi): The top (most significant) eight bits of a 16-bit number representing the error check value.

3.2 Serial Transmission Modes

There are two MODBUS Protocol serial transmission modes, ASCII and RTU. 2-WIRE Digital meters do not

support the ASCII mode.

In RTU (Remote Terminal Unit) mode, each 8-bit byte is used in the full binary range and is not limited to ASCII

characters as in ASCII Mode. The greater data density allows better data throughput for the same baud rate,

however each message must be transmitted in a continuous stream. This is very unlikely to be a problem for

modern communications equipment.

Qonnex bvba

11 DCE.230 Modbus manual v1.7

Coding System: Full 8-bit binary per byte. In this document, the value of each byte will be shown as two

hexadecimal characters each in the range 0-9 or A-F.

Line Protocol: 1 start bit, followed by the 8 data bits. The 8 data bits are sent with least significant bit first.

User Option Of Parity No Parity and 2 Stop Bits

And Stop Bits: No Parity and 1 Stop Bit

Even Parity and 1 Stop Bit Odd Parity and 1 Stop

Bit.

User Option of Baud 1200，2400，4800 ，9600

The baud rate, parity and stop bits must be selected to match the master’s settings.

3.3 MODBUS Protocol Message Timing (RTU Mode)

A MODBUS Protocol message has defined beginning and ending points. The receiving devices recognizes the

start of the message, reads the “Slave Address” to determine if they are being addressed and knowing when

the message is completed they can use the Error Check bytes and parity bits to confirm the integrity of the

message. If the Error Check or parity fails then the message is discarded.

In RTU mode, messages starts with a silent interval of at least 3.5 character times.

The first byte of a message is then transmitted, the device address.

Master and slave devices monitor the network continuously, including during the ‘silent’ intervals. When the first

byte (the address byte) is received, each device checks it to find out if it is the addressed device. If the device

determines that it is the one being addressed it records the whole message and acts accordingly, if it is not

being addressed it continues monitoring for the next message.

Following the last transmitted byte, a silent interval of at least 3.5 character times marks the end of the message.

A new message can begin after this interval.

The entire message must be transmitted as a continuous stream. If a silent interval of more than 1.5 character

times occurs before completion of the message, the receiving device flushes the incomplete message and

assumes that the next byte will be the address byte of a new message.

Similarly, if a new message begins earlier than 3.5 character times following a previous message, the receiving

device may consider it a continuation of the previous message. This will result in an error, as the value in the

final CRC field will not be valid for the combined messages.

3.4 How Characters are Transmitted Serially

When messages are transmitted on standard MODBUS Protocol serial networks each byte is sent in this order

(left to right):

Transmit Character = Start Bit + Data Byte + Parity Bit + 1 Stop Bit (11 bits total):

 Least Significant Bit (LSB) Most Significant Bit (MSB)

Start 1 2 3 4 5 6 7 8 Party Stop

Qonnex bvba

12 DCE.230 Modbus manual v1.7

Transmit Character = Start Bit + Data Byte + 2 Stop Bits (11 bits total):

Start 1 2 3 4 5 6 7 8 Stop Stop

2-WIRE Digital meters additionally support No parity, 1 stop bit.

Transmit Character = Start Bit + Data Byte + 1 Stop Bit (10 bits total):

Start 1 2 3 4 5 6 7 8 Stop

The master is configured by the user to wait for a predetermined timeout interval. The master will wait for this

period of time before deciding that the slave is not going to respond and that the transaction should be aborted.

Care must be taken when determining the timeout period from both the master and the slaves’ specifications.

The slave may define the ‘response time’ as being the period from the receipt of the last bit of the query to the

transmission of the first bit of the response. The master may define the ‘response time’ as period between

transmitting the first bit of the query to the receipt of the last bit of the response. It can be seen that message

transmission time, which is a function of the baud rate, must be included in the timeout calculation.

3.5 Error Checking Methods

Standard MODBUS Protocol serial networks use two error checking processes, the error check bytes mentioned

above check message integrity whilst Parity checking (even or odd) can be applied to each byte in the message.

3.5.1 Parity Checking

If parity checking is enabled – by selecting either Even or Odd Parity - the quantity of “1’s” will be counted in the

data portion of each transmit character. The parity bit will then be set to a 0 or 1 to result in an Even or Odd total

of “1’s”.

Note that parity checking can only detect an error if an odd number of bits are picked up or dropped in a transmit

character during transmission, if for example two 1’s are corrupted to 0’s the parity check will not find the error.

If No Parity checking is specified, no parity bit is transmitted and no parity check can be made. Also, if No Parity

checking is specified and one stop bit is selected the transmit character is effectively shortened by one bit.

Qonnex bvba

13 DCE.230 Modbus manual v1.7

3.5.2 CRC Checking

The error check bytes of the MODBUS Protocol messages contain a Cyclical Redundancy Check (CRC) value

that is used to check the content of the entire message. The error check bytes must always be present to comply

with the MODBUS Protocol, there is no option to disable it.

The error check bytes represent a 16-bit binary value, calculated by the transmitting device. The receiving device

must recalculate the CRC during receipt of the message and compare the calculated value to the value received

in the error check bytes. If the two values are not equal, the message should be discarded.

The error check calculation is started by first pre-loading a 16-bit register to all 1’s (i.e. Hex (FFFF)) each

successive 8-bit byte of the message is applied to the current contents of the register. Note: only the eight bits

of data in each transmit character are used for generating the CRC, start bits, stop bits and the parity bit, if one

is used, are not included in the error check bytes.

During generation of the error check bytes, each 8-bit message byte is exclusive OR'ed with the lower half of

the 16 bit register. The register is then shifted eight times in the direction of the least significant bit (LSB), with

a zero filled into the most significant bit (MSB) position. After each shift the LSB prior to the shift is extracted

and examined. If the LSB was a 1, the register is then exclusive OR'ed with a pre-set, fixed value. If the LSB

was a 0, no exclusive OR takes place.

This process is repeated until all eight shifts have been performed. After the last shift, the next 8-bit message

byte is exclusive OR'ed with the lower half of the 16 bit register, and the process repeated. The final contents of

the register, after all the bytes of the message have been applied, is the error check value. In the following

pseudo code “Error Word” is a 16-bit value representing the error check values.

BEGIN
 Error Word = Hex (FFFF)
 FOR Each byte in message
 Error Word = Error Word XOR byte in message
 FOR Each bit in byte
 LSB = Error Word AND Hex (0001)
 IF LSB = 1 THEN Error Word = Error Word – 1
 Error Word = Error Word / 2
 IF LSB = 1 THEN Error Word = Error Word XOR Hex (A001)
 NEXT bit in byte
NEXT Byte in message
END

3.6 Function Codes

The function code part of a MODBUS Protocol message defines the action to be taken by the slave. 2-WIRE

Digital meters support the following function codes:

Code
MODBUS Protocol name

Description

03
Read Holding Registers Read the contents of read/write

location(4X references)

04 Read Input Registers
Read the contents of read only
location(3X references)

Qonnex bvba

14 DCE.230 Modbus manual v1.7

3.7 IEEE floating point format

The MODBUS Protocol defines 16 bit “Registers” for the data variables. A 16-bit number would prove too

restrictive, for energy parameters for example, as the maximum range of a 16-bit number is 65535.

However, there are a number of approaches that have been adopted to overcome this restriction. 2-WIRE

Digital meters use two consecutive registers to represent a floating-point number, effectively expanding the

range to +/- 1x1037.

The values produced by 2-WIRE Digital meters can be used directly without any requirement to “scale” the

values, for example, the units for the voltage parameters are volts, the units for the power parameters are

watts etc.

What is a floating point Number?

A floating-point number is a number with two parts, a mantissa and an exponent and is written in the form 1.234

x 105. The mantissa (1.234 in this example) must have the decimal point moved to the right with the number of

places determined by the exponent (5 places in this example) i.e. 1.234x 105 = 123400. If the exponent is

negative the decimal point is moved to the left.

What is an IEEE 754 format floating-point number?

An IEEE 754 floating point number is the binary equivalent of the decimal floating-point number shown above.

The major difference being that the most significant bit of the mantissa is always arranged to be 1 and is thus

not needed in the representation of the number. The process by which the most significant bit is arranged to be

1 is called normalization, the mantissa is thus referred to as a “normal mantissa”. During normalization the bits

in the mantissa are shifted to the left whilst the exponent is decremented until the most significant bit of the

mantissa is one. In the special case where the number is zero both mantissa and exponent are zero.

The bits in an IEEE 754 format have the following significance:

Data Hi Reg,

Hi Byte.

Data Hi Reg,

Lo Byte.

Data Lo Reg,

Hi Byte.

Data Lo Reg,

Lo Byte.

SEEE

EEEE

EMMM MMMM MMMM

MMMM

MMMM

MMMM

Where:

S represents the sign bit where 1 is negative and 0 is positive

E is the 8-bit exponent with an offset of 127 i.e. an exponent of zero is represented by 127, an exponent of 1 by

128 etc.

M is the 23-bit normal mantissa. The 24th bit is always 1 and, therefore, is not stored.

Using the above format the floating point number 240.5 is represented as 43708000 hex:

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

43 70 80 00

Qonnex bvba

15 DCE.230 Modbus manual v1.7

The following example demonstrates how to convert IEEE 754 floating-point numbers from their hexadecimal

form to decimal form. For this example, we will use the value for 240.5 shown above

Note that the floating-point storage representation is not an intuitive format. To convert this value to decimal, the

bits should be separated as specified in the floating-point number storage format table shown above.

For example:

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

0100 0011 0111 0000 1000 0000 0000 0000

From this you can determine the following information.

·The sign bit is 0, indicating a positive number.

·The exponent value is 10000110 binary or 134 decimal. Subtracting 127 from 134 leaves 7, which is the actual

exponent.

·The mantissa appears as the binary number 11100001000000000000000

There is an implied binary point at the left of the mantissa that is always preceded by a 1. This bit is not stored

in the hexadecimal representation of the floating-point number. Adding 1 and the binary point to the beginning

of the mantissa gives the following:

1.11100001000000000000000

Now, we adjust the mantissa for the exponent. A negative exponent moves the binary point to the left. A positive

exponent moves the binary point to the right. Because the exponent is 7, the mantissa is adjusted as follows:

11110000.1000000000000000

Finally, we have a binary floating-point number. Binary bits that are to the left of the binary point represent the

power of two corresponding to their position. For example, 11110000 represents (1 x 27) + (1 x 26) + (1x 25) +

(1 x 24) + (0 x 23)+ (0 x 22) + (0 x 21)+ (0 x 20) = 240.

Binary bits that are to the right of the binary point also represent a power of 2 corresponding to their position. As

the digits are to the right of the binary point the powers are negative. For example: .100 represents (1 x 2-1) +

(0 x 2-2)+ (0 x 2-3) + … which equals 0.5.

Adding these two numbers together and making reference to the sign bit produces the number +240.5.

For each floating point value requested two MODBUS Protocol registers (four bytes) must be requested. The

received order and significance of these four bytes for 2-WIRE Digital meters is shown below:

Data Hi Reg,

Hi Byte

Data Hi Reg,

Lo Byte

Data Lo Reg,

Hi Byte

Data Lo Reg,

Lo Byte

3.8 MODBUS Protocol Commands supported

All 2-WIRE Digital meters support the “Read Input Register” (3X registers), the “Read Holding Register” (4X

registers) and the “Pre-set Multiple Registers” (write 4X registers) commands of the MODBUS Protocol RTU

protocol. All values stored and returned are in floating point format to IEEE 754 with the most significant register

first.

Qonnex bvba

16 DCE.230 Modbus manual v1.7

3.8.1 Read Input Registers

MODBUS Protocol code 04 reads the contents of the 3X registers.

Example
The following query will request ‘Volts 1’ from an instrument with node address 1:

Field Name Example(Hex)

Slave Address 01

Function 04

Starting Address High 00

Starting Address Low 00

Number of Points High 00

Number of Points Low 02

Error Check Low 71

Error Check High CB

Note: Data must be requested in register pairs i.e. the “Starting Address“ and the “Number of Points” must be

even numbers to request a floating point variable. If the “Starting Address” or the “Number of points” is odd then

the query will fall in the middle of a floating point variable the product will return an error message.

The following response returns the contents of Volts 1 as 230.2. But see also “Exception Response” later.

Field Name Example (Hex)

Slave Address 01

Function 04

Byte Count 04

Data, High Reg, High Byte 43

Data, High Reg, Low Byte 66

Data, Low Reg, High Byte 33

Data, Low Reg, Low Byte 34

Error Check Low 1B

Error Check High 38

3.9 Holding Registers

3.9.1 Read Holding Registers

MODBUS Protocol code 03 reads the contents of the 4X registers.

Example

The following query will request the prevailing ‘Demand Time’:

Field Name Example (Hex)

Slave Address 01

Qonnex bvba

17 DCE.230 Modbus manual v1.7

Function 03

Starting Address High 00

Starting Address Low 00

Number of Points High 00

Number of Points Low 02

Error Check Low C4

Error Check High 0B
Note: Data must be requested in register pairs i.e. the “Starting Address“ and the “Number of Points” must be

even numbers to request a floating point variable. If the “Starting Address” or the “Number of points” is odd then

the query will fall in the middle of a floating point variable the product will return an error message.

The following response returns the contents of Demand Time as 1, But see also “Exception Response” later.

Field Name Example (Hex)

Slave Address 01

Function 03

Byte Count 04

Data, High Reg, High Byte 3F

Data, High Reg, Low Byte 80

Data, Low Reg, High Byte 00

Data, Low Reg, Low Byte 00

Error Check Low F7

Error Check High CF

3.9.2 Write Holding Registers

MODBUS Protocol code 10 (16 decimal) writes the contents of the 4X registers.

Example

The following query will set the Demand Period to 60, which effectively resets the Demand Time:

Field Name Example (Hex)

Slave Address 01

Function 10

Starting Address High 00

Starting Address Low 02

Number of Registers High 00

Number of Registers Low 02

Byte Count 04

Data, High Reg, High Byte 42

Data, High Reg, Low Byte 70

Qonnex bvba

18 DCE.230 Modbus manual v1.7

Data, Low Reg, High Byte 00

Data, Low Reg, Low Byte 00

Error Check Low 67

Error Check High D5

Note: Data must be written in register pairs i.e. the “Starting Address“ and the “Number of Points” must be even

numbers to write a floating point variable. If the “Starting Address” or the “Number of points” is odd then the

query will fall in the middle of a floating point variable the product will return an error message. In general only

one floating point value can be written per query

The following response indicates that the write has been successful. But see also “Exception Response”later.

Field Name Example (Hex)

Slave Address 01

Function 10

Starting Address High 00

Starting Address Low 02

Number of Registers High 00

Number of Registers Low 02

Error Check Low E0

Error Check High 08

